X-RAY TELESCOPES AND DETECTORS

MATTEO GUAINAZZI ESTEC/ESA, NOORDWIJK (NETHERLANDS)

WHY SATELLITES?

[... and why so many?]

OUTLINE

- How do we "focus" X-rays?
- How do we detect X-rays?
- Which quantities characterise the instrument performances (and must be calibrated)?

[No "gratings" in this lecture. More in the lecture by A.Ibarra tomorrow]

OUTLINE

- How do we "focus" X-rays?
- How do we detect X-rays?
- Which quantities characterise the instrument performances (and must be calibrated)?

Equating [1] & [2], and after Taylor expansion

$$\theta_{\rm c} = \sqrt{2\delta} = 5.6' \left(\frac{\rho}{1\,{\rm g\,cm^{-3}}}\right)^{1/2} \frac{\lambda}{1\,{\rm nm}}$$

(full derivation in Kalemci & Wilms, http://pulsar.sternwarte.uni-erlangen.de/black-hole/2ndschool/talks/Wilms_xrays.pdf)

GRAZING INCIDENCE REQUIRED

Focusing higher energies requires longer focal lengths (smaller grazing incidence angles)

RELATION BETWEEN FOCAL LENGTH AND FIELD-OF-VIEW

$$\mathrm{AFOV} = 2 imes an^{-1} \left(rac{H}{2f}
ight)$$

(Hollows & James, https://www.edmundoptics.eu/knowledge-center/application-notes/imaging/understanding-focal-length-and-field-of-view/)

WOLTER I GEOMETRY

(from a review by Gorenstein, 2010, X-ray Optics and Instrumentation, 2010, 109740; original paper by Wolter, 1952, Ann. Phys, 10, 94 & 256)

NICER CONCENTRATORS

CHANDRA AND XMM-NEWTON MIRRORS - LIMITED TO <10 KEV

Chandra optics (the solid line is the mirror area)

XMM-Newton optics

They die out miserably at 10 keV!

(Chandra POG, http://cxc.harvard.edu/proposer/POG/)

(http://xmm.esac.esa.int/external/xmm_user_support/documentation/technical/Mirrors/index.shtml)

CAN WE FOCUS ABOVE 10 KEV?

Multiple layers of reflecting, high density contrast materials can act as a crystal lattice and yield constructive interference, enhancing reflectivity

FOCUSING OPTICS >10 KEV

 NuSTAR carries the first operational focusing optics above 10 keV

 200 pairs of Pt/ Sc & W/Si coating layers

(Harrison et al., 2013, ApJ, 770, 103)

OUTLINE

How do we "focus" X-rays?

- How do we detect X-rays?
- Which quantities characterise the instrument performances (and must be calibrated)?

PHOTON-MATTER INTERACTION

 μ/ρ : linear attenuation coefficient.

Probability for a photon to be absorbed per unit distance and density

(data from NIST)

IONISATION CHAMBER

Visualisation of ion chamber operation

PROPORTIONAL COUNTERS

<u>Problem</u>: primary ionisation produces weak signals (\approx a few mV) Solution: multiply the charge detected at anode

where A: amplification factor (typically: $A = 10^4 \dots 10^6$). Since $A \sim \text{const.}$: Voltage pulse $\propto N$, and therefore Voltage pulse $\propto \text{detected X-ray energy}!$ and therefore: "proportional counter"

(11)

CCDS

- Array of electrostatically-linked ("coupled") capacitors
- Photons interacts in a semiconductor (Si) layer via photoelectric absorption, and produce an electron-hole pair "cloud"
 - {number of e⁻} {X-ray photon energy}/3.7 (eV/e⁻)
- Electrons are collected in pixels through an electric field
- Pixels can transfer charge to a neighbouring pixels via modulated potential
- The transferred "cloud" is eventually read by an amplifier

We know how to create an e⁻ cloud. <u>Problem</u>: how to prevent it from recombining immediately with the corresponding holes?

DOPED SEMI-CONDUCTORS

- Small gap between valence and conduction band (~1.1 eV for Si)
- Even a small number of impurities increases conductivity

PN JUNCTION

In the <u>p-type</u> region there are holes from the acceptor *impurities* and in the <u>n-type</u> region there are extra electrons.

When a <u>p-n junction</u> is formed, some of the electrons from the n-region which have reached the conduction band are free to diffuse across the junction and combine with holes.

Filling a hole makes a negative ion and leaves behind a positive ion on the n-side. A space charge builds up, creating a depletion region which inhibits any further electron transfer

Electron

Negative ion from filling of p-type vacancy.

Positive ion from removal of electron from n-type impurity.

- Charge formed • in the depletion layer cannot diffuse further
- A "reverse bias" increases the potential gap and size

• this "depletion layer is where all the action occurs (the e-cloud forms)

(material extracted from http://hyperphysics.phy-astr.gsu.edu)

CCD STRUCTURE (CHANDRA/ACIS)

(Lecture on CCD by C.Grant at the NASA 2007 X-ray Astronomy School: http://heasarc.gsfc.nasa.gov/docs/xrayschool-2007/grant_ccds.pdf)

CCD CHARGE TRANSFER (EPIC-PN)

EPIC-pn is **back-illuminated** to avoid gate absorption.

In the transfer process, charge may be lost: this **Charge Transfer Inefficiency** is the main source of uncertainty in the energy reconstruction

(from the Chandra POG: http://cxc.cfa.harvard.edu/proposer/POG/)

(Strüder et al., 2001, A&A, 365, L18; Turner et al., 2001, A&A, 365, L27)

Seminal papers on pile-up: Ballet, 1999, A&AS, 135, 371 Davis, 2001, ApJ, 562, 575

-

PN operating modes

NUSTAR DETECTORS

- NuSTAR detectors are solid-state, optimised for the detection of high(er) energy photons
- Array of Cadmium-Zinc-Telluride crystals
- 4 detectors, 1024 pixels each

NICER DETECTORS

OUTLINE

- How do we "focus" X-rays?
- How do we detect X-rays?
- Which quantities characterise the instrument performances (and must be *calibrated*)?

POINT SPREAD FUNCTION (PSF)

Chandra - PSF HEW ≃0.5"

XMM-Newton - PSF HEW 15"

Suzaku - PSF HEW 120"

Cassiopea A SNR

(Chandra: Page et al., 2011, Ph.Rev.Lett, 106, 081101; Suzaku: Maeda et al., 2009, PASJ, 61, 1217; XMM-Newton: from the image gallery)

ENCIRCLED ENERGY FRACTION

Alternative convenient way to represent the PSF in 1 dimension

IMAGE QUALITY QUICKLY DEGRADES OFF-AXIS

Chandra

NuSTAR

ENERGY RESOLUTION

- The energy resolution (ΔE) is the width in energy space
 of an input monochromatic signal
- Primarily driven by the Poissonian statistics (N discrete electron-ion or electron-hole pairs!) $\Rightarrow \Delta E \propto \sqrt{N} \propto \sqrt{E}$
- Slight correlation due to amplifying discharge yields a smaller variance than Poissonian ⇒ Fano Factor (F)

 $\frac{\Delta E}{E} = 2.35 \left(\frac{W(F+A)}{E} \right)^{1/2} F \sim 0.2, \Delta E(6 \text{ keV}) \sim 14\%$

Energy required to create a pair

• In gas detectors:

• In CCDs:
$$\frac{\Delta E}{E} = 2.355 \sqrt{\frac{3.65 \text{ eV} \cdot F}{E}}$$
 F~0.1, $\Delta E(6 \text{ keV}) \sim 3\%$

ENERGY REDISTRIBUTION

EFFECTIVE AREA

(Courtesy ATHENA Science Team)

VIGNETTING

XMM-Newton vignetting curves

Shadowing effect changes dramatically the area off-axis!

(XMM-Newton User's Handbook: http://xmm.esac.esa.int/external/xmm_user_support/documentation/uhb/XMM_UHB.html)

SUMMARY

- Chandra: ACIS (CCD), [LH]HETG (gratings), HRC (MCP)
- INTEGRAL: JEM-X (PC),
- MAXI: GSC (PC), SSC (CCD)
- NuSTAR (focusing optics >10 keV, CdZnTe)
- Swift: XRT (CCD), BAT (CdZn Te)
- Suzaku: XIS (CCD), HXD (Phoswitch scintillator)
- XMM-Newton: EPIC (CCD), RGS (gratings)