

Intro to Timing Analysis Prof. D. Altamirano

In astronomy, a light curve is a graph of light intensity of a celestial object or region, as a function of time.

In astronomy, a light curve is a graph of light intensity of a celestial object or region, as a function of time.

DATA Binning

Binning Options
Combinod pixols on tho CCD Chip

None										
\times										
(4 pixels $=1$)										
$\begin{gathered} 3 \times 3 \\ (9 \text { pixels }=1) \end{gathered}$										
4×4										
(16 pixels = 1)										

DATA Binning

Price trends of the Samsung Galaxy S on idealo

Wikipedia says: Time series analysis comprises methods for analyzing time series data in order to extract meaningful statistics and other characteristics of the data.

A time series is a sequence of data points,

 measured typically at successive points in time spaced at uniform time intervals.

So here we will not discuss all the time series techniques ... there is a lot out there!

We aim at understanding what exist, and why you should care.....

A time series is a sequence of data points,

 measured typically at successive points in time spaced at uniform time intervals.

Time

Time

If it is obvious that you would not consider that
 A period of Fear == one of Excitment nor
 One of Euphoria == one of Depression

Then you should definitely apply the same logic when you analyze your data!

Good Time Interval

Good Time Interval

263742929.0000000 263743026.0000000 263748625.0000000
263743009.0000000 263745778.0000000
263751841.0000000

GTI

Good Time Interval

263742929.0000000	263743009.0000000			
263743026.0000000	263745778.0000000			
263748625.0000000	263751841.0000000	- Offset $=$	0	80
:---	:---			
97	2849			
5696	8912			

Good Time Interval

There is no standard tool that you can use for every problem!!

Time

Time

Always make a light curve first! (and if necessary, use different energy bands and binning factor!!)

Time Binning!

How do things change?

Time bin $=0.01$ seconds

Time bin $=0.01$ seconds

Energy selection...

changes my light curve?

Energy 1 - 3 (in channels)

Energy 1 - 3 (in channels)

Coming back to the talk....

X-ray colors -> helping tracing variability

X-ray colors -> helping tracing variability

X-ray colors -> helping tracing

 variability- Color 1 = B/A
- Color 2 = D/C
- Intensity $=\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}$

Folding (or similar techniques)!

Folding (or similar techniques)!

In many cases, we just can't do the selections by eye, or by using spectral colors....

There can be much more variability than that you can see with the naked eye....

In many cases, we just can't do the selections by eye, or by using spectral colors....

There can be much more variability than that you can see with the naked eye....

Statistics some times kill us, but Sir Fourier comes to our help!

Wave A

Sine 1 (course tune 0)

Sine 2 (course tune +48)

Wave A

$$
\boxed{\square}
$$

The Fourier Transform .com

http://www.thefouriertransform.com/

Any function can be written as a sum of complex exponentials

Once we know the Fourier coefficients, we have divided the time series into its different frequency components, and have entered the frequency "domain."
https://www.youtube.com/watch?v=SpzNQOOBeRg

> NTRODUCTION -TOFOURIER SERIES
http://commons.wikimedia.org/wiki/File:Fourier_transform_time_and_frequency_domains.gif

Any function can be written as a sum of complex exponentials

The set of all Fourier powers is the Power Spectrum

https://www.youtube.com/watch?v=vvr9AMWEU-c

System and methods for recognizing sound and music signals in high noise and distortion US 6990453 B2

ABSTRACT

A method for recognizing an audio sample locates an audio file that most closely matches the audio sample from a database indexing a large set of original
recordings. Each indexed audio file is represented in the database index by a set

Publication number
Publication type
Application number
Publication date
Filing date
Priority date ?
Fee status ?
Also published as
Inventors

US6990453 B2
Grant
US 09/839,476
Jan 24, 2006
Apr 20, 2001
Jul 31, 2000
Paid
CN1592906A, 18 More »
Avery Li-Chun Wang, Julius O. Smith, III

Number of Trials to First Success

Informally, the probability of an event is the average number of times the event occurs in a sequence of trials. Another way of looking at that is to ask for an average number of trials before the first occurrence of the event. This could be formalized in terms of mathematical expectation.

Dynamical Power spectrum

(a)

$$
\frac{4}{5}
$$

Dynamical Power spectrum --> Gives the orbital period!!

With great power, comes greât responsability

With great power, it comes grêat responsability

Super nice result!!!!

Time and Frequency are "Duals"

Time
Sampling
Δt

Frequencyocounts)
Sampling
Δf

Nyquist
Frequency
$\mathrm{f}_{\text {max }}$

Phase / Time Lags

Primary radiation

Phase ... Phase ... Phase

$$
y(t)=A \sin (2 \pi f t+\varphi)=A \sin (\omega t+\varphi)
$$

where:

- A, the amplitude, is the peak deviation of the function from zero.
- f, the ordinary frequency, is the number of oscillations (cycles) that occur each second of time.
- $\omega=2 \pi f$, the angular frequency, is the rate of change of the

The graphs of the sine and cosine functions are sinusoids of different phases. function argument in units of radians per second

- φ, the phase, specifies (in radians) where in its cycle the oscillation is at $t=0$.
- When φ is non-zero, the entire waveform appears to be shifted in time by the amount φ / ω seconds. A negative value represents a delay, and a positive value represents an advance.

Phase ... Phase ... Phase

Phase / Time Lags

Phase shift $=90$ degrees A is ahead of B (A "leads" B)

Phase shift $=90$ degrees B is ahead of A (B "leads" A)

Phase shift = 180 degrees A and B waveforms are mirror-images of each other

Phase shift $=0$ degrees
A and B waveforms are in perfect step with each other

Phase / Time Lags

Primary radiation

(atat ${ }^{2}$
 MAGIC WORD:

cross-correlation!
ses

Two square waves

Convolution result

www.nr.com

NUMERICAL RECIPES'

The Art of Scientific Computing

Third Edition

Click on any image below to display in the right column more information about the product or service.

Numerical Recipes Home Pa

We are nr.com, Numerical Recipes Software. We are one Web, dating back to 1993 when there were only about 25,0 about $200,000,000$.) In partnership with Cambridge Univer: series of books on scientific computing and related software

fLike $\{1.4 \mathrm{k}$ We're now on Facebook as Numerical Recip you might get a free NR3 ebook lifetime subscription! (This Facebook-friendly.) Check regularly at this link to see if you

Numerical Recipes in Java ${ }^{\mathrm{TM}!}$ High-quality translations of o by a Numerical Recipes user. They are available to all other information.

You can call Numerical Recipes routines (along with any oth examples is here. A free interface file is here. This is an alph
b

Energy Band	$3-79 \mathrm{keV}$
Angular Resolution	$58^{\prime \prime}(\mathrm{HPD}), 18^{\prime \prime}(\mathrm{FWHM})$
Focal Plane Size	$12^{\prime} \times 12^{\prime}$
Energy Resolution	0.4 keV at $6 \mathrm{keV}, 0.9 \mathrm{keV}$ at 60 keV (FWHM)
Temporal Resolution	0.1 msec
Maximum Flux Measurement Rate	$10,000 \mathrm{cts} / \mathrm{s}$
ToO response	$<24 \mathrm{hours}$
Launch date	$\mathrm{June} \mathrm{13,2012}$
Orbit	$650 \mathrm{~km} \times 610 \mathrm{~km}, 6$ degree inclination
Slew Rate	$0.06 \mathrm{deg} / \mathrm{sec}$
Settle Time	142 sec

No pile up!!! -- but you do have deadtime :-S

You can't imagine how important is to have a broad eneryg coverage!!

